A Data-Driven Robust Scheduling Method Integrating Particle Swarm Optimization Algorithm with Kernel-Based Estimation
نویسندگان
چکیده
The assembly job shop scheduling problem (AJSSP) widely exists in the production process of many complex products. Robust methods aim to optimize given criteria for improving robustness schedule by organizing processes under uncertainty. In this work, uncertainty setup time and processing is considered, a framework robust AJSSP using data-driven methodologies proposed. consists obtaining distribution information uncertain parameters based on historical data particle swarm optimization (PSO) algorithm schedule. Firstly, kernel density estimation method used estimate probability function parameters. To control schedule, concept confidence level introduced when determining range Secondly, an interval constructed theory customized discrete PSO are with constraints. Several computational experiments illustrate proposed method, these were proven effective performance
منابع مشابه
Automatic Kernel Clustering with Multi-Elitist Particle Swarm Optimization Algorithm
This article introduces a scheme for clustering complex and linearly non-separable datasets, without any prior knowledge of the number of naturally occurring groups in the data. The proposed method is based on a modified version of classical Particle Swarm Optimization (PSO) algorithm, known as the Multi-elitist PSO (MEPSO) model. It also employs a kernel-induced similarity measure instead of t...
متن کاملA Robust STATCOM Controller using Particle Swarm Optimization
In this paper, a statcom without any energy storage devices is proposed to compensate network voltage during disturbances. This statcom utilizes a matrix converter in its topology which eliminates the DC-link capacitor of conventional statcom. The modulation method for matrix converter which is used in this paper is space vector modulation. There are some methods to improve power quality for se...
متن کاملTask Scheduling Using Particle Swarm Optimization Algorithm with a Selection Guide and a Measure of Uniformity for Computational Grids
In this paper, we proposed an algorithm for solving the problem of task scheduling using particle swarm optimization algorithm, with changes in the Selection and removing the guide and also using the technique to get away from the bad, to move away from local extreme and diversity. Scheduling algorithms play an important role in grid computing, parallel tasks Scheduling and sending them to ...
متن کاملTask Scheduling Using Particle Swarm Optimization Algorithm with a Selection Guide and a Measure of Uniformity for Computational Grids
In this paper, we proposed an algorithm for solving the problem of task scheduling using particle swarm optimization algorithm, with changes in the Selection and removing the guide and also using the technique to get away from the bad, to move away from local extreme and diversity. Scheduling algorithms play an important role in grid computing, parallel tasks Scheduling and sending them to ...
متن کاملA hybrid particle swarm optimization with estimation of distribution algorithm for solving permutation flowshop scheduling problem
In this paper we propose PSO–EDA, a hybrid particle swarm optimization (PSO) with estimation of distribution algorithm (EDA) to solve permutation flowshop scheduling problem (PFSP). PFSP is an NP-complete problem, for which PSO was recently applied. The social cognition in the metaphor of canonical PSO is incomplete, since information conveyed in the non-gbest particles is lost. Also, the intel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied sciences
سال: 2021
ISSN: ['2076-3417']
DOI: https://doi.org/10.3390/app11125333